The last two days, I was in London for the M-cubed conference. Here are the slides from my talk about Explaining complex machine learning models with LIME: Traditional machine learning workflows focus heavily on model training and optimization; the best model is usually chosen via performance measures like accuracy or error and we tend to assume that a model is good enough for deployment if it passes certain thresholds of these performance criteria.

Continue reading

These are my sketchnotes for Sam Charrington’s podcast This Week in Machine Learning and AI about Evaluating Model Explainability Methods with Sara Hooker: Sketchnotes from TWiMLAI talk: Evaluating Model Explainability Methods with Sara Hooker You can listen to the podcast here. In this, the first episode of the Deep Learning Indaba series, we’re joined by Sara Hooker, AI Resident at Google Brain. I had the pleasure of speaking with Sara in the run-up to the Indaba about her work on interpretability in deep neural networks.

Continue reading

In our next MünsteR R-user group meetup on Tuesday, November 20th, 2018, titled Using R to help plan the future of transport, Mark Padgham will provide an overview of several inter-related R packages for analysing urban dynamics. You can RSVP here: http://meetu.ps/e/F7zDN/w54bW/f The primary motivation for developing these packages has been their use in Active Transport Futures - a group of researchers and coders striving to aid cities to better plan for futures in which active travel, particularly walking and cycling, plays an increasingly prominent role (lots of open source code at github.

Continue reading

A while ago, I wrote two blogposts about image classification with Keras and about how to use your own models or pretrained models for predictions and using LIME to explain to predictions. Recently, I came across this blogpost on using Keras to extract learned features from models and use those to cluster images. It is written in Python, though - so I adapted the code to R. You find the results below.

Continue reading

On Wednesday, September 26th, I gave a talk about ‘Decoding The Black Box’ at the Frankfurt Data Science Meetup. My slides were created with beautiful.ai and can be found here. DECODING THE BLACK BOX And finally we will have with us Dr.Shirin Glander, whom we were inviting for a long time back. Shirin lives in Münster and works as a Data Scientist at codecentric, she has lots of practical experience.

Continue reading

I have yet another Meetup talk to announce: On Wednesday, September 26th, I’ll be talking about ‘Decoding The Black Box’ at the Frankfurt Data Science Meetup. Particularly cool with this meetup is that they will livestream the event at www.youtube.com/c/FrankfurtDataScience! TALK#2: DECODING THE BLACK BOX And finally we will have with us Dr.Shirin Glander, whom we were inviting for a long time back. Shirin lives in Münster and works as a Data Scientist at codecentric, she has lots of practical experience.

Continue reading

Registration is now open for my 1.5-day workshop on deep learning with Keras and TensorFlow using R. It will take place on November 8th & 9th in Munich, Germany. You can read about one participant’s experience in my workshop: Big Data – a buzz word you can find everywhere these days, from nerdy blogs to scientific research papers and even in the news. But how does Big Data Analysis work, exactly?

Continue reading

Author's picture

Dr. Shirin Glander

Biologist turned Bioinformatician turned Data Scientist

Data Scientist

Münster, Germany