In a recent video, I covered Random Forests and Neural Nets as part of the codecentric.ai Bootcamp. In the most recent video, I covered Gradient Boosting and XGBoost. You can find the video on YouTube and the slides on slides.com. Both are again in German with code examples in Python. But below, you find the English version of the content, plus code examples in R for caret, xgboost and h2o. :-)

Continue reading

In my last blogpost about Random Forests I introduced the codecentric.ai Bootcamp. The next part I published was about Neural Networks and Deep Learning. Every video of our bootcamp will have example code and tasks to promote hands-on learning. While the practical parts of the bootcamp will be using Python, below you will find the English R version of this Neural Nets Practical Example, where I explain how neural nets learn and how the concepts and techniques translate to training neural nets in R with the H2O Deep Learning function.

Continue reading

A few colleagues of mine and I from codecentric.ai are currently working on developing a free online course about machine learning and deep learning. As part of this course, I am developing a series of videos about machine learning basics - the first video in this series was about Random Forests. You can find the video on YouTube but as of now, it is only available in German. Same goes for the slides, which are also currently German only.

Continue reading

These are the slides from my workshop: Introduction to Machine Learning with R which I gave at the University of Heidelberg, Germany on June 28th 2018. The entire code accompanying the workshop can be found below the video. The workshop covered the basics of machine learning. With an example dataset I went through a standard machine learning workflow in R with the packages caret and h2o: reading in data exploratory data analysis missingness feature engineering training and test split model training with Random Forests, Gradient Boosting, Neural Nets, etc.

Continue reading

When looking through the CRAN list of packages, I stumbled upon this little gem: pkgnet is an R library designed for the analysis of R libraries! The goal of the package is to build a graph representation of a package and its dependencies. And I thought it would be fun to play around with it. The little analysis I ended up doing was to compare dependencies of popular machine learning packages.

Continue reading

Since I migrated my blog from Github Pages to blogdown and Netlify, I wanted to start migrating (most of) my old posts too - and use that opportunity to update them and make sure the code still works. Here I am updating my very first machine learning post from 27 Nov 2016: Can we predict flu deaths with Machine Learning and R?. Changes are marked as bold comments. The main changes I made are:

Continue reading

For those of you out there who speak German: I was interviewed for a tech podcast where I talked about machine learning, neural nets, why I love R and Rstudio and how I became a Data Scientist. You can download and listen to the podcast here: https://mies.me/2018/01/31/hmww17-machine-learning-mit-dr-shirin-glander/ In der aktuellen Episode gibt Dr. Shirin Glander (Twitter, Homepage) uns ein paar Einblicke in das Thema Machine Learning. Wir klären zunächst, was Machine Learning ist und welche Möglichkeiten es bietet bevor wir etwas mehr in die Tiefe gehen.

Continue reading

Author's picture

Dr. Shirin Glander

Biologist turned Bioinformatician turned Data Scientist

Data Scientist

Münster, Germany