I have written another blogpost about Looking beyond accuracy to improve trust in machine learning at my company codecentric’s blog: Traditional machine learning workflows focus heavily on model training and optimization; the best model is usually chosen via performance measures like accuracy or error and we tend to assume that a model is good enough for deployment if it passes certain thresholds of these performance criteria. Why a model makes the predictions it makes, however, is generally neglected.

Continue reading

I have written the following post about Data Science for Fraud Detection at my company codecentric’s blog: Fraud can be defined as “the crime of getting money by deceiving people” (Cambridge Dictionary); it is as old as humanity: whenever two parties exchange goods or conduct business there is the potential for one party scamming the other. With an ever increasing use of the internet for shopping, banking, filing insurance claims, etc.

Continue reading

Author's picture

Dr. Shirin Glander

Biologist turned Bioinformatician turned Data Scientist

Data Scientist

Münster, Germany