When looking through the CRAN list of packages, I stumbled upon this little gem: pkgnet is an R library designed for the analysis of R libraries! The goal of the package is to build a graph representation of a package and its dependencies. And I thought it would be fun to play around with it. The little analysis I ended up doing was to compare dependencies of popular machine learning packages.

Continue reading

Since I migrated my blog from Github Pages to blogdown and Netlify, I wanted to start migrating (most of) my old posts too - and use that opportunity to update them and make sure the code still works. Here I am updating my very first machine learning post from 27 Nov 2016: Can we predict flu deaths with Machine Learning and R?. Changes are marked as bold comments. The main changes I made are:

Continue reading

For those of you out there who speak German: I was interviewed for a tech podcast where I talked about machine learning, neural nets, why I love R and Rstudio and how I became a Data Scientist. You can download and listen to the podcast here: https://mies.me/2018/01/31/hmww17-machine-learning-mit-dr-shirin-glander/ In der aktuellen Episode gibt Dr. Shirin Glander (Twitter, Homepage) uns ein paar Einblicke in das Thema Machine Learning. Wir klären zunächst, was Machine Learning ist und welche Möglichkeiten es bietet bevor wir etwas mehr in die Tiefe gehen.

Continue reading

I have written another blogpost about Looking beyond accuracy to improve trust in machine learning at my company codecentric’s blog: Traditional machine learning workflows focus heavily on model training and optimization; the best model is usually chosen via performance measures like accuracy or error and we tend to assume that a model is good enough for deployment if it passes certain thresholds of these performance criteria. Why a model makes the predictions it makes, however, is generally neglected.

Continue reading

I have written the following post about Data Science for Fraud Detection at my company codecentric’s blog: Fraud can be defined as “the crime of getting money by deceiving people” (Cambridge Dictionary); it is as old as humanity: whenever two parties exchange goods or conduct business there is the potential for one party scamming the other. With an ever increasing use of the internet for shopping, banking, filing insurance claims, etc.

Continue reading

Author's picture

Dr. Shirin Glander

Biologist turned Bioinformatician turned Data Scientist

Data Scientist

Münster, Germany