I have yet another Meetup talk to announce: On Wednesday, October 26th, I’ll be talking about ‘Decoding The Black Box’ at the Frankfurt Data Science Meetup. Particularly cool with this meetup is that they will livestream the event at www.youtube.com/c/FrankfurtDataScience! TALK#2: DECODING THE BLACK BOX And finally we will have with us Dr.Shirin Glander, whom we were inviting for a long time back. Shirin lives in Münster and works as a Data Scientist at codecentric, she has lots of practical experience.

Continue reading

Today I am very happy to announce that during my stay in London for the m3 conference, I’ll also be giving a talk at the R-Ladies London Meetup on Tuesday, October 16th, about one of my favorite topics: Interpretable Deep Learning with R, Keras and LIME. You can register via Eventbrite: https://www.eventbrite.co.uk/e/interpretable-deep-learning-with-r-lime-and-keras-tickets-50118369392 ABOUT THE TALK Keras is a high-level open-source deep learning framework that by default works on top of TensorFlow.

Continue reading

On November 7th, I’ll be in Munich for the W-JAX conference where I’ll be giving the talk that my colleague Uwe Friedrichsen and I gave at the JAX conference this April again: Deep Learning - a Primer. Let me know if any of you here are going to be there and would like to meet up! Slides from the original talk can be found here: https://www.slideshare.net/ShirinGlander/deep-learning-a-primer-95197733 Deep Learning is one of the “hot” topics in the AI area – a lot of hype, a lot of inflated expectation, but also quite some impressive success stories.

Continue reading

Here I am sharing the slides for a webinar I gave for SAP about Explaining Keras Image Classification Models with LIME. Slides can be found here: https://www.slideshare.net/ShirinGlander/sap-webinar-explaining-keras-image-classification-models-with-lime Keras is a high-level open-source deep learning framework that by default works on top of TensorFlow. Keras is minimalistic, efficient and highly flexible because it works with a modular layer system to define, compile and fit neural networks. It has been written in Python but can also be used from within R.

Continue reading

This is code that will encompany an article that will appear in a special edition of a German IT magazine. The article is about explaining black-box machine learning models. In that article I’m showcasing three practical examples: Explaining supervised classification models built on tabular data using caret and the iml package Explaining image classification models with keras and lime Explaining text classification models with xgboost and lime

Continue reading

This is code that will encompany an article that will appear in a special edition of a German IT magazine. The article is about explaining black-box machine learning models. In that article I’m showcasing three practical examples: Explaining supervised classification models built on tabular data using caret and the iml package Explaining image classification models with keras and lime Explaining text classification models with xgboost and lime

Continue reading

These are the slides from my workshop: Introduction to Machine Learning with R which I gave at the University of Heidelberg, Germany on June 28th 2018. The entire code accompanying the workshop can be found below the video. The workshop covered the basics of machine learning. With an example dataset I went through a standard machine learning workflow in R with the packages caret and h2o: reading in data exploratory data analysis missingness feature engineering training and test split model training with Random Forests, Gradient Boosting, Neural Nets, etc.

Continue reading

Author's picture

Dr. Shirin Glander

Biologist turned Bioinformatician turned Data Scientist

Data Scientist

Münster, Germany